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ABSTRACT

Next-generation sequencing (NGS) has revolutionized the detection of structural variation

in genome. Among NGS strategies, reading depth is widely used and paramorphism infor-

mation contained inside is generally ignored. We develop an algorithm that can fully exploit

both reading depth and paramorphism information. We embed mutation procedure in our

system model for estimating prior likelihood of single nucleotide base. Hidden Markov model

is used to connect single base into segments and belief propagation algorithm is performed

for the optimal solution of the HMM model. Simulations show promising results in detecting

important types of structural variation. We have applied the algorithm on the maize B73 and

MO17 genome data and compared the results with those obtained from arrayCGH method

based micro-array data. Inconsistency between the two sets of data is discussed.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

In genome research, structural variation is defined as insertions, deletions and inversions in

the sequence level or copy number variation (CNV) and presence/absence variation (PAV) in

genomic level. Structural Variations (SV) are associated with the cause of disease as well as

different traits between individuals [1–3]. Detecting structure variation in genomes has been

under research quite long and great development has been achieved [4].

In the past, array-based method was used widely in SV detection and genotyping. Typical

methods include array comparative genomic hybridization (arrayCGH) and SNP microarrays.

Due to the resolution of probes, array-based methods have limitations in accuracy for longer

CNV segments larger than 10 thousand base pairs (10 kbp) [5]. Another disadvantage is

high-cost and intensive labor for re-sequencing arrays. Sequencing-based method, named next-

generation sequencing (NGS), requires less labor and has less limitations in accuracy. Through

de novo assembly, given long and accurate enough reading sequence, all kinds of SV could

be reconstructed [4]. However, de novo assembly is still under development to reduce its

complexity and improve algorithm speed as well as reduce cost for large genome datasets.

Tuzun et al. [6] proposed a way of detecting accurate small SV segments less than 1 kbp

using paired-end reading (PEM) strategy. However, such method has little statistical power for

SV larger than 1kbp due to PEM’s limited resolution of detecting large segments. Small length

SVs as well as their boundaries could be estimated precisely through exploiting paramorphism

information. Zollner et al. [2] applied Bayesian computations and expectation-maximization

(EM) algorithm to a known CNV location and achieved accurate estimation of CNV carrier

status and its boundaries. However, known location is necessary in this algorithm. Compared
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to them, reading depth provides a wide detection range and statistical accuracy. Event-Wise

Testing achieved fast algorithm speed via processing intervals of reading depth and applied

statistical significance test to the intervals with controlled significance level [7]. It achieved

satisfactory results for CNV segments around 1000bp. A method called CNAseg applied Skel-

lam distribution to reading depth and employed Hidden Markov Model (HMM) on combining

segments of reading counts and found better estimation and precision besides lower significance

level [3].

All the methods above have their own advantages and limitations. If we combine some

of those methods, improved accuracy and detection range may be achieved. In this thesis,

we are interested in combining both reading depth and paramorphism to achieve better CNV

detection range and accuracy. Ideally, segments less or larger than 1 kbp can both be detected

accurately.

1.2 Contributions

The main contributions of the thesis are the follows:

1. We propose a novel framework to model the process of nucleotide copies, paramorphism,

and the randomness in the sequencing sampling process. Although the model is proposed

for deriving the subsequent algorithm, it may also be useful for other investigations of

related problems.

2. We evaluate likelihood of CNV considering mutation probability at each base pair loca-

tion. The evaluation takes into account both reading depth and paramorphism informa-

tion.

3. We proposes a simple hidden Markov model (HMM) relating the copy number variation

and presence/absence variation of neighboring base pairs. We also derive a belief prop-

agation algorithm for the specific problem to estimate the copy numbers and possible

presence/absence variation.
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The algorithm has been applied to lab measured data comprising a reference genome and a

sample genome. The results are compared with those obtained with arrayCGH.
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CHAPTER 2. SYSTEM MODEL

We describe in this chapter the system model for our proposed detection algorithm. The

model consists two parts: 1) a single symbol model for a base pair that considers copy number

variation, mutation, and the randomness in the sampling process; and 2) a Hidden Markov

Model (HMM) that incorporates the dependence among neighboring base pairs. The algo-

rithms for performing CNV detection using the proposed model and the measurement data

will be described in the next chapter.

2.1 Input Data Format

Before we describe the model that we will build, we first describe the input data format for

the problem. This information will help understand the nature of the problem, and the model

that we will describe later.

The input is the assembled sequenced data stored in a PILEUP format [8]. An example of

some lines of the file is shown below:

0 5896 C 4 .,,. IDII

0 5897 C 4 .,,. I.0I

0 5898 A 4 .,,. I%:I

0 5899 T 4 .,,. I&/I

0 5900 G 4 .,,. I2?I

0 5901 G 4 .,,. IIII

0 5902 G 4 .,,. I.HI

0 5903 A 4 .,,. I+II

0 5904 G 4 .,,. II@I

0 5905 A 4 .g,. <&II

0 5906 A 4 .$,,. IIII

The first column specifies the chromosome number. The second column specifies the gene

base pair index within the chromosome. The third column specifies the nucleotide on the ref-
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DUP

MUT

READ

MUT

MUT

READ

READ
n

S

S

M1
S

S

SS . . . S

M2
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R1

R2

Rn

R

Figure 2.1 Single Base Pair Model

erence base. The fourth column specifies the reading depth of the sequencing output. The fifth

column specifies the reading results, where matches are marked as dot and comma depending

on whether the match with the reference base is exact match or reverse match. If not a match

at a certain read, the result of read is explicitly marked. The last column specifies the mapping

qualities encoded using ASCII characters.

Two such PILEUP files are available: one for the reference species and the other for the

sample species. The problem is to process the sequencing data contained in the files and detect

possible CNV and PAV in the sample species, as compared to the reference species.

2.2 Single Base Pair Model

We first propose a model that incorporates the possible copy number variation, mutation, and

the randomness in the sampling process. In this model, we only consider the case where the

ratio of the copy numbers n between the sample species and the reference species is larger than

or equal to one. In other word, assuming the copy number of the reference is 1 at a certain

base pair. The cases where the copy number of the sample is smaller than that of the reference

will be considered separately later, in next chapter.

2.2.1 Proposed model

Our proposed model is depicted in Figure 2.1. The model describes what happens to a single

base pair in the sample species. A symbol S goes through three steps to produce the observed
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data: copying, mutation, and sampling (or reading). We are interested in using the model

to estimate the likelihood of copy numbers from the known reading depth and the reading

distribution, available in the PILEUP format data. We next describe the model in more

details. There are 4 possibilities for S, namely {A,C,G, T} := B.

1. Copy. For each symbol, assume its true copy number is n. The DUP block in the figure

replicates the symbol S and produces n copies of S at its output.

2. Mutation. Each of the n copies can mutate to a different symbol with certain probability.

This is represented as a MUT block in the figure. For simplicity, we assume the non-

mutation probability for each copy of each symbol is the same as (1− p). For example,

if S = A, the probability for a symbol A to stay as A after the mutation block is (1− p).

With probability p/3, it can mutate to one of the other three possible nucleotides C, G,

and T . Let M1,M2, . . . ,Mn be the n symbols after mutation. We denote the type of the

mutated symbols as n = (nA, nC , nG, nT ), where ni is the number of symbols i in the

sequence (M1,M2, . . . ,Mn), for i ∈ {A,C,G, T}.

The mutation distribution n is a vector describing mutation distribution in the order of

ATGC. For example, if S = A, and there is no mutation, then n = [n, 0, 0, 0]. If A has

one copy symbol mutated to G, then n = [(n− 1), 0, 1, 0].

Given the known symbol S, and the copy number n, the mutation distribution is multi-

nomial:

Pr(n|n, S) =
n!

∏

i∈B ni!

∏

i∈B

Pi
ni , (2.1)

where

Pi =















1− p, i = S,

p/3, i 6= S.

(2.2)

3. Reading. Each mutated copy has a certain probability of being sampled by the sequencing

procedure. The reading result has two parts of information: the reading depth, and the

reading distribution.
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Random distribution for the reading depth can be modeled by a Poisson distribution, a

negative binomial distribution or a Skellam distribution. In this thesis, we use Poisson

distribution to model the reading depth. Assuming the reading depth number is k, the

probability of getting a known k reading depth given copy number n should be like this:

Pr(k|n) =
(nλ)ke−nλ

k!
(2.3)

where λ is the parameter of the Poisson distribution. Symbols in reference genome are

assumed to have only one copy. If there is no copy procedure, sample symbol reading

depths are expected to have the same mean as the reference symbols. So we will choose

the reading depth in the reference genome times possible copy numbers as the parameter

λ, the expected rate of increasing number for that symbol.

4. Reading Error. In the process of mapping symbols, there is a probability of error for

each reading symbol. However, in this thesis, for simplicity, we consider the probability

of error to be the same for all, represented by ǫ. There are two situations that both lead

to detecting a copy for a typical symbol, for instances, A. If a symbol is indeed A, and

it is read correctly, there would be one A in the final reading result. Another possibility

is that the symbol was indeed one of C, G, or T and is mistakenly read into A. Suppose

there are na counts of symbol A, nG counts of G, nC counts of C and nT counts of T.

For each symbol, the probability of detecting one A in the observed data should be:

qA = (1− ǫ)na/n+ (ǫ/3)(ng + nc + nt)/n, (2.4)

where n = nA + nC + nG + nT . In general, for any symbol i, the probability of reading

an i would be qi = (1− ǫ)ni/n+ (ǫ/3)
∑

j 6=i nj/n. It could be written in matrix form:



















qA

qC

qG

qT



















=



















1− ǫ ǫ ǫ ǫ

ǫ 1− ǫ ǫ ǫ

ǫ ǫ 1− ǫ ǫ

ǫ ǫ ǫ 1− ǫ





































nA/n

nC/n

nG/n

nT /n



















(2.5)

Knowing the distribution of the symbols in the final reading result, we deduce that the

reading result distribution is multinomial. That is, given the mutation distribution n,
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the distribution of the reading results k := (kA, kC , kG, kT ) should be as follows:

Pr(k|k,n) =
k!

∏

i∈B ki!

∏

i∈B

qi
ki (2.6)

where qi is defined in (2.5), B = {A, T,G,C}, and k =
∑

i∈B ki is the reading depth.

2.2.2 Likelihood Copy number

Having derived the conditional probabilities in (2.1), (2.3), (2.5), we next derive the likelihood

functions Pr(k|n, S), which is the desired function for processing the input data for each base

pair.

Using the chain rule of probability, we have

Pr(k, k,n|n, S) = Pr(n|n, S) · Pr(k|n, S,n) · Pr(k|n, S,n, k) (2.7)

= Pr(n|n, S) · Pr(k|n) · Pr(k|n, k) (2.8)

where in (2.8), we have used

Pr(k|n, S,n) = Pr(k|n) (2.9)

which states that the reading depth does not depend on what symbols are being read, and

Pr(k|n, S,n, k) = Pr(k|n, k) (2.10)

which states that once the mutation distribution n is known, and for a given reading depth k,

the reading distribution k does not depend on the copy number n and the source symbol S.

We can then marginalize (average out) the mutation n to obtain

Pr(k, k|n, S) =
∑

n

Pr(k, k,n|n, S), (2.11)

where the summation is over n such that
∑

i∈B ni = n. Further marginalizing the total reading

depth k, which is trivial as k =
∑

i∈B ki deterministically, we have

Pr(k|n, S) =
∑

n

Pr(k, k,n|n, S) (2.12)



www.manaraa.com

9

δi

ni
ni+1

+

Figure 2.2 HMM Model

To summarize, the likelihood function can be obtained using (2.12), (2.8), (2.1), (2.3),

(2.5), as follows:

Pr(k|n, S) =
∑

n

[

n!
∏

i∈B ni!

∏

i∈B

Pi
ni

]

·

[

(nλ)ke−nλ

k!

]

·

[

k!
∏

i∈B ki!

∏

i∈B

qi
ki

]

(2.13)

where qi’s are given in (2.5)

With the known information, namely the reference symbol S, and the reading distribution

k, we can compute likelihood of its copy number. The largest likelihood would be the most

possible copy number, based on the read information at a single base pair.

2.3 Hidden Markov model

In the previous section, we view each symbol independent from the other symbols in the

genome. However, this is not true in real. Copy procedure usually involves a large segment,

thus two adjacent symbols have a high probability of sharing the same copy number. We term

the difference of location index between two nodes as distance. The longer distance between

two symbols, the lower probability of their sharing the same copy number.

2.3.1 Single-Step Dependency

To model the dependency of the neighboring symbols’ copy numbers, we assume a hidden

Markov model(HMM) and use it for combining long sequence of copy number estimates. HMM

has been previously used to model SNP detection [3, 9]. In this thesis , we propose a simple

but novel HMM model is depicted in Figure 2.2.

In the figure, ni−1 and ni represents the copy number at two adjacent location i− 1 and i.

The variable δi could be viewed as the hidden state at location i. The mapping relationship
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between copy number and hidden variable is:

ni+1 = 1 + (ni + δi − 1) mod m. (2.14)

The m above stands for the number of states in the model. The reason that the model is

hidden Markov is that the states δi are not directed observed.

The change δi has a probability distribution like follows:

Pr(δ = 0) = p, and Pr(δ 6= 0) = 1− p, (2.15)

where δ = 0 represents no change in copy number, and δ 6= 0 represents that that is a change.

In the case where there is a change, we will assume that the probability (1− p) is equally split

among the cases where ni+1 6= ni. The probability p will be chosen according to desired gene

CNV segment length. For example, for a length of 1000 base pairs, we may set p = 0.999.

The above Markov model corresponds to setting

Pr(ni+1|ni, ni−1, ni−2, . . .) = Pr(ni+1|ni) (2.16)

and

Pr(ni+1 = ni|ni) = p, Pr(ni+1 6= ni|ni) = 1− p. (2.17)

2.3.2 Multi-Step Dependency

It is also possible that the dependency between two symbols that are separated by a distance

d > 1 needs to be calculated. We assume that a similar HMM holds where ni+1 would be

replaced in general by ni+d. The transition probability will be chosen according to the d-step

transition probability of the single-step Markov chain described in Section 2.3.1. Specifically,

let m denote the total number of states for each ni. The transition probability of (2.17) can

be described by the following matrix

T =



















p 1−p
m−1 . . . 1−p

m−1

1−p
m−1 p

. . .
...

...
. . .

. . . 1−p
m−1

1−p
m−1 . . . 1−p

m−1 p



















(2.18)
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where we have assumed that the states are numbered from 1 to m, and the (i, j)-th entry

of the matrix is set to Pr(ni+1 = i|ni = j). The d-step transition matrix is simply T d, for

d = 1, 2, 3, . . .. Since the matrix T is a circulant matrix, it is possible to obtain the closed form

expression of T d through its eigen-value decomposition, where the eigen-vectors are Fourier

basis vectors. The m eigen-values are as follows:

1,
mp− 1

m− 1
, . . . ,

mp− 1

m− 1
. (2.19)

As a result, it can be shown that

T d =



















α β . . . β

β α
. . .

...

...
. . .

. . . β

β . . . β α



















(2.20)

where

α =
1

m
+

m− 1

m
·

(

mp− 1

m− 1

)d

, (2.21)

β =
1− α

m− 1
. (2.22)

That is, Pr(ni+d = ni|ni) = α, and Pr(ni+d 6= ni|ni) = 1− α.
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CHAPTER 3. ALGORITHM

In this chapter, we describe the details of our proposed algorithm. The algorithm consists

two major steps. In the first step, each symbol is processed independently to obtain the

likelihood for different copy numbers and presence/absence variations. In the second step, the

single-symbol information is jointly processed using the hidden Markov model through a belief

propagation algorithm.

3.1 Single-Symbol Processing

We first describe the processing details for a single base pair. The input is one input line in

the PILEUP file data (the reading results of the sequencing output for one base pair). And

the output is the likelihood of various copy number possibilities (states).

3.1.1 Copy number states

In many genomes such as the maize genome, large copy number is common. However, the

CNV that we do have interest is relative small numbers, usually less than 3. For this reason,

and to reduce the computation complexity, we consider the cases where the copy number n is

larger than 3 jointly.

For each symbol of the sample, we compute the likelihood of the copy number n being in

state i ∈ A := {0, 1−, 1, 2, 3, 3+}, where

• n = 0 means deletion: the segment was present in the reference but not present in the

sample.

• n = 1− means copy number reduction: the copy number in the reference is larger than

1, and the copy number in the sample is smaller than that in the reference.
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• n = 1, 2, 3 means respectively that the copy number is 1, 2, and 3.

• n = 3+ means that the copy number is larger than 3.

3.1.2 Computing Likelihood for n = 1, 2, 3

Given the observation data, which is in the form of the reading depth, reading distribution,

we can compute the likelihood for each base pair according to the formula in (2.13). For small

copy numbers n, enumerating all possibilities of n = (nA, nC , nG, nT ) such that the sum of the

entries is equal to n is feasible, and that is what we are going to use. However for large n, it

becomes computationally unfeasible. As such we propose a simplified computation for large

copy numbers, as detailed below.

3.1.3 Likelihood for large copy number

For simplicity and faster processing speed, we can ignore the mutation information when the

reading depth is large enough. This is intuitively reasonable since when the reading depth is

large, the information contained in the reading depth alone may be strong enough for estimating

the copy number. Specifically, ignoring the reading distribution, and only using the reading

depth, we have

Pr(k|n ≥ 4) =

∑∞
i=4 Pr(k|n = i) Pr(n = i)

∑∞
i=4 Pr(n = i)

. (3.1)

The above formula is the product of Poisson distribution and the prior distribution of copy

number. It is clear that to compute (3.1), some prior distribution on the copy number n needs

to be assumed. To obtain such prior distribution from the data, we can use the empirical

distribution of the reading depth as an approximation of the prior distribution of the copy

number.

3.1.4 PAV detection

Deletion in SV has two patterns. One is that the reference genome has a segment or a symbol

while it disappears in the sample genome. If a segment is not observed in the sample, it

could be due to a miss during the sampling process. However, if this is a long segment, this



www.manaraa.com

14

probability would be low. The most possible situation is that this segment is totally deleted in

the sample genome. In our method, we detect those deleted symbols by finding the region that

exists only in reference genome and not in the sample genome. If we observe a missing base

pair in the sample, then we will assign a high likelihood to the state n = 0, which corresponds

to deletion, and a low likelihood to the other cases. If no such deletion detected, then we should

set the likelihood of n = 0 to be really small number, accounting for outliers possibilities.

The second situation is that a symbol or a segment existed in both reference and sample.

However, the reading depth in the reference for that region is much larger than that in the

sample. It is also possible that this is due to a miss in the sampling process for the sample

genome. The same as the situation above, if the region is long enough, there is a large

probability that the number of this region is decreased. The likelihood assignment to the copy

numbers n = 1, 2, 3 in this case should present a decreasing trend from n = 1 to n = 3. This

is because, if we use n = 1− to represent this deletion case (reduction in copy number), the

likelihood for n = 1− should be the largest. Thus, we use our computed likelihood according

to (2.13) as well as the ratio between reference and sample as a judgment for this case in our

method. If the likelihood is decreasing and the ratio is larger than a certain threshold (say

1.6), the likelihood for deletion would be set to a relatively large number say 0.1. If one of the

two criteria is not satisfied, the likelihood should be set to a really small number to exclude

outliers possibilities.

3.2 Factor graph and belief propagation algorithm

What we have obtained so far in Section 2.3.1 are Pr(kj |nj , Sj) for each symbol j. However,

nearby symbols are dependent on each other according to the HMM. Given HMM described

in Section 2.3, our next step is to find the posterior probability of copy number given all

the symbols’ copy number likelihoods in the genome. Let N denotes the total length of a

chromosome of interest, our observed data are ∆ = (S1, . . . , SN ;k1 . . .kN ). Our goal is to

estimate the copy numbers nj for j = 1, . . . , N . Specifically, we would like to compute the
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ni−1

δi−1

ni
ni−1 ni

δi

ni+1 ni+1

= + = + =

Figure 3.1 Model Factor Graph

following distributions:

P (nj |S1, . . . , SN ;k1 . . .kN ). (3.2)

This problem in general has high complexity due to the need to marginalize all symbols but

nj in the joint posterior distribution of (n1, . . . , nN ). For our problem, we have

P (n1, . . . , nN |S1, . . . , SN ;k1, . . . ,kN ) (3.3)

∝ P (n1, . . . , nN ;k1, . . . ,kN |S1, . . . , SN ) (3.4)

= P (n1, . . . , nN |S1, . . . , SN ) · P (k1, . . . ,kN |S1, . . . , SN ;n1, . . . , nN ) (3.5)

= P (n1, . . . , nN ) · P (k1, . . . ,kN |S1, . . . , SN ;n1, . . . , nN ) (3.6)

=
N
∏

i=1

P (ni|ni−1)
N
∏

i=1

P (ki|Si, ni) (3.7)

=

N
∏

i=1

P (ni|ni−1)P (ki|Si, ni) (3.8)

where in (3.6) we have assumed that the copy numbers do not depend on the underlying

symbols, and in (3.7) we have used the assumption that the copy numbers (n1, . . . , nN ) form

a Markov chain, and the fact that given the copy number ni and the symbol Si the reading

result ki at location i is independent of symbols, copy numbers, and reading results at other

locations.

Due to the Markov structure, a low complexity algorithm for computing the posterior

probabilities in (3.2) is possible through the belief propagation algorithm.

3.2.1 Factor graph

We can use factor graph [10] to represent the HMM constraints as a graphical model. Take

any three adjacent symbols ni−1, ni, ni+1 for example. Their dependencies can be depicted as
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y1 yn· · ·

Figure 3.2 Building Block of Sum-Product Algorithm

in Figure 3.1. The factor graph describes the dependency of the variables. The half edges “⊣”

describe input output variables. For more complete description of factor graph, see [10, 11].

3.2.2 Sum-product algorithm

In the tutorial paper [10], details about factors graph, sum-product algorithm and max-product

algorithm are discussed. Here we stated briefly, in general, how the sum-product algorithm

works. Given a factorization of a global function into a product of terms that are each a function

of a subset of the variables, the sum-product algorithm efficiently computes the summaries of

each variable, where a summary of variable x is a summation over all combinations of other

variables but x of the global function. For example, if the global function is f(x1, x2, x3), then

the summary of x1 is

p(x1) =
∑

x2,x3

f(x1, x2, x3). (3.9)

The summary operation is the right operation needed to obtain a marginal distribution given

the joint distribution of multiple random variables.

The sum-product algorithm simplifies the tasks of computing the summaries by using the

fact that the global function can be factorized. The algorithm performs computations on the

graphical model as follows. For each factor (square blocks), and for each edge of the factor, two

messages are computed. One is leaving the block and one is entering the block. The message

leaving the block is computed as a function of all the messages entering the block from all

other edges connected to the block. Specifically, for a block g as shown in Figure 3.2, to obtain

the outgoing message for x, we should multiply all messages coming on edges y1 to yn and sum
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Figure 3.3 Sum-Product Algorithm for the CNV problem

them:

fg→x(x) =
∑

y1

. . .
∑

yn

g(x, y1, . . . , yn)× fy1→g(y1)× . . .× fyn→g(yn). (3.10)

This operation is performed on all blocks and all edges recursively. Due to the nature of the

algorithm, it is often also referred to informally as message-passing algorithm.

3.2.3 Sum-Product Algorithm for the CNV problem

We get back to our problem. Due to the linear nature of our graphical model (the Markov

chain), there should be bi-directional message flows. The HMM model for inverse direction

is the same except for different transition probabilities. The algorithm diagram is shown in

Figure 3.3, where it can be seen that for each edge of the HMM, there are two messages in

opposite directions.
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3.2.3.1 Initialization

We define the following notation for probabilities:

αL,i(ni) ∝ P (ni|Si+1, . . . , SN ;ki+1, . . . ,kN ) (3.11)

αR,i(ni) ∝ P (ni|S1, . . . , Si;k1, . . . ,ki) (3.12)

βL,i(ni+1) ∝ P (ni+1|Si+1, . . . , SN ;ki+1, . . . ,kN ) (3.13)

βR,i(ni+1) ∝ P (ni+1|S1, . . . , Si;k1, . . . ,ki) (3.14)

ζi(ni) = P (ni+1|ni) (3.15)

γD,i(n) = P (ki|Si, ni) (3.16)

γU,i(n) ∝ P (ni|S1, . . . , Si−1, Si+1, . . . , SN ;k1, . . . ,ki−1,ki, . . . ,kN ) (3.17)

The normalizing constants in the “∝” parts are not important because the final result can

always be normalized to 1 using the fact that a valid (conditional) probability mass function

sums up to one. The algorithm will be initialized with

βR,0(n) = αL,N (n) = pi, i ∈ A (3.18)

where pi is the prior probability of a certain state i in the total state space A in the absence

of any reading data.

3.2.3.2 Computation nodes

There are two types of nodes in Fig 3.3. One type that has the “=” sign represents constraints

of equal value passing through the node. In mathematics expressions, it represents a factor in

the global joint probability distribution of all variables in the form of

δ(x− y)δ(x− z).

Another node has + sign inside which represents constraints that one value equals to the

summation of another two. It represents a factor of the form

δ(z − x− y).
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Figure 3.4 Special Nodes

Applying (3.10), we have the following computations to be performed in the message passing

algorithm:

1. At the “Plus” nodes:

(a) From left to right:

βR,i(n) =
∑

n1,n2

δ(n− n1 − n2)αR,i(n1)ζi(n2) =
∑

l

αR,i(l)ζi(n− l) (3.19)

(b) From right to left:

αL,i(n) =
∑

n1,n2

δ(n1 − n− n2)βL,i(n1)ζi(n2) =
∑

l

βR,i(l)ζi(l − n) (3.20)

2. At the “Equal” nodes:

(a) From left to right:

αR,i(n) =
∑

n1,n2

δ(n− n1)δ(n− n2)βR,i−1(n1)γD,i(n2) = βR,i−1(n)γD,i(n) (3.21)

(b) From right to left:

βL,i−1(n) =
∑

n1,n2

δ(n− n1)δ(n− n2)αL,i(n1)γD,i(n2) = αL,i(n)γD,i(n) (3.22)

(c) The message up:

γU,i−1(n) =
∑

n1,n2

δ(n− n1)δ(n− n2)αL,i(n1)βR,i−1(n2) = αL,i(n)βR,i−1(n) (3.23)
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3.2.3.3 Output

The output of the algorithm is the posterior probabilities in (3.2). Specifically, we have

P (nj |S1, . . . , SN ;k1 . . .kN ) = γD,i(n)γU,i(n). (3.24)

3.2.3.4 The whole algorithm

The algorithm will perform the computations in the following way:

1. The messages pointing to the right will be computed from left to right.

2. The messages pointing to the left will then be computed from right to left.

3. The messages pointing up will be computed in any order (say from left to right).

4. The output are computed by summing the γD,i(n) and γR,i(n) messages, for all i for all

n.
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CHAPTER 4. RESULTS, CONCLUSIONS, AND DISCUSSION

4.1 Results on maize data

We used maize genome data for analysis. Two sets of data for two species are available. The

reference genome is named B73 and the sample one named MO17. All data is in pileup format.1

Considering the large data, 5GB for both sample and reference genome, we can simplify the

computation significantly with the following consideration. From our model in (2.13), it can be

seen that in the case of no mutation, the prior likelihood of copy depends only on the sample

reading depth. For the mutation case, this value depends on both reading depth and the

distribution of the nucleotides in the reading results. Since the mutation probability is rather

small, the computing the likelihood using depth-only information can significantly reduce the

complexity.

We process the genome from chromosome to chromosome. For each chromosome, we read

the index, symbol, reading depth and reading depth distribution from the sample genome and

the index, and retrieve the reading depth from reference genome. We then transform the data

from symbols to numbers. We use 1, 2, 3, and 4 in our algorithm to represent A T G C,

respectively.

We find the nucleotide indices that exist in both sample and reference genome and assign

the reference reading depth as the λ parameter for the corresponding symbol on the sample.

The we take the union of the reference index and sample index. Thus if there is a total deletion,

the corresponding value for λ is zero, which would be easy for the algorithm detection.

1Check http://samtools.sourceforge.net/pileup.shtml for details about pileup format.
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4.1.1 Distribution of the reading depth

First, we obtained the distribution of the reading depth in the two genomes. This can give us

some understanding of the distribution of the copy numbers.
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Figure 4.1 Reading depth distribution in both the reference and the sample

In Figure 4.1, we have shown the reading depth distribution in both the reference and the

sample. For the sample (MO17) and for n = 1, 2, 3, the distribution can be approximated as

(0.41)n. For n ≥ 4, we averaged the ratio between two adjacent numbers and found it can be

approximated as 0.0637× (0.8544)(n−4). Using this approximation, we can obtain

Pr(k|n ≥ 4) =

∑∞
i=4

(iλ)ke(−iλ)

k! 0.0637(0.8544)(i−3)

∑∞
i=4 0.0637(0.8544)

(i−4)

=

∑∞
i=4

(iλ)ke(−iλ)

k! (0.8544)i
∑∞

i=4(0.8544)
i

= 0.2732×
∞
∑

i=4

(iλ)ke(−i(λ−ln 0.8544))/k!

= 0.2732×
λk(k + 1)

(λ− ln 0.8544)k

∞
∑

i=4

(iλ− i ln 0.8544)ke(−iλ+i ln 0.8544)/(k + 1)! (4.1)

The summation in (4.1) could be approximated as the cumulative distribution function(CDF)

of gamma distribution. Thus the likelihood function finally turns out to be

L(n ≥ 4) = 0.2732×
λk(k + 1)

(λ− ln 0.8544)k
[1− γ(inc)(4λ, k)] (4.2)
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The γ(inc)(·) represents the incomplete gamma integral from 1 to 4λ:

γ(inc)(x, k) =

∫ x

0
tk−1e−tdt. (4.3)

Use integral to replace the summation may lead to biased results. However, such bias would

not affect the decision significantly.

4.1.2 Processing per base pair

At each base pair, we first determine whether this is a n = 0 case (no reading). If it is, we

set the likelihood of deletion to a large number. If it is not and the sample reading depth,

denoted as K, lies between 2
3λ to 10λ, we consider it as a calculable case. The next step is to

judge if it is a mutation case or not. If there is no mutation, we obtain the likelihood values

using depth-only information. This information can be stored in a precomputed table. If it

is mutation case, we calculate the prior probability under the model described in the method

part using (2.13). If the reading depth K is less than 2
3λ, we set the likelihood value for the

case of 1− (copy number of reference larger than that of the sample) to a large value. For all

the other case, set the likelihood has largest value in status 3+ directly. Due to some error in

the data, some extreme values in the likelihoods are removed.

4.1.3 Message passing

We then apply belief propagation to the prior probability from symbol to symbol, in the forward

and backward directions. To reduce the amount that data that need to be stored in memory,

we process the data in segments of length 100,000 symbols. After belief propagation on each

block, we output the posterior probability results for all but the last 10,000 symbols. The next

segment starts from the last 20,000 symbols of the previous segments and so on until the end

of the data. This way, it requires less time for processing 10,000 symbols each time and the

break points is also taken care of.
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4.1.4 Result filtering

The copy number corresponding to the highest likelihood would be considered as the copy

number for that point. There can be regions of copy numbers that are more than 1 but the

length of the region is less than 1000 bp. We filter out the copy number variation segments

that have lengths less than 1000 bp. The filtering procedure is important. Due to outliers in

the data, small regions of CNV or PAV happen quite often, where the length could be as small

as 20. Such regions are of little biological interest. Filtering out those small region would give

us a cleaner result.

4.1.5 Simulation verification

Before applying the algorithm to the maize data, we performed an experiment by running the

algorithm on simulated data first. The simulation data was generated based on the reference

genome data. To test the detection capability of CNV from this algorithm, we doubled the

reading depth for symbols whose indices are between 100,000 and 200,000, on chromosome

number 0 in the reference genome. We took the first 400,000 nucleotides for simulation. The

ideal result would be an interval of copy number equals to 2 from 100,000 to 200,000. The

result from applying the algorithm is showed below: The CNV we detected starts on index
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Figure 4.2 CNV simulation
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100421 and ends on 199944 with values equal to 2, which almost fits our ideal figure. Before

filtering, there are several small intervals equals to 3 in the figure. Those periods are caused

by outlier values. We noticed that the outlier caused a small different region lasted about 10

symbols. After we applied a filter on it, those regions were smoothed.

For the deletion case, simulation data were generated in a similar way. We deleted data

between 100,000 200,000 interval on chromosome number 0 in the B73 genome. Using the

simulation data as sample genome and first 400,000 original data as reference genome, we

would find the segments where deletion happened. The ideal figure should show an interval

between 100,000 to 200,000 with copy number of 0. The results are showed below in Figure 4.3.
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Figure 4.3 PAV Simulation

The PAV we detected starts on index 100421 and ends on 199944. Outliers are already

smoothed in this case. The results almost fits the ideal figure.

Simulation test showed us this algorithm could detect both CNV and PAV correctly and

their accurate position.

4.1.6 Processing measured genomic data

Now we move to the real situation, where there are more variable cases. We took chromosome

number 6 in reference genome and its corresponding sample genome and ran our algorithm.
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Since there are no ground truth data on the structure variation in the chromosome, we com-

pared our result with that of micro-array-based method arrayCGH.
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Figure 4.4 PAV Segments

We set the reading error probability to 10−3. We only keep segments longer than 1kb in

the output, by performing filtering on the message passing algorithm output.

In Figure 4.4 we plotted the detected PAV result, as compared with that from the arrayCGH

method. The x axis denotes the starting point of a structure variation segment, and the length

in the y direction describes the length of the segment. For the arrayCGH result, we plot them

upward, and for our result, we plot them downward. It can be seen that most of the locations

are overlapped in the figure. However, the lengths of the segments tend to be longer in the

arrayCGH case.

There are a lot of small deletion segments in the data. Those small segments could be

viewed as miss sampling. If we want to filter out a typical CNV segment, those small deletion

segments would affect filter process in our algorithm. We fill those deletion segments as the

CNV or PAV we want to as a way of smoothing data. By applying this method to detect

status 6, partial deletion in sample, the following figure shows the result. The exact location
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Figure 4.5 partial PAV Segments

is not fitted. However, segments all crowded around a similar range, which suggest this range
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may suffer a partial deletion.

Except for the small segments of deletion, outliers would result in breakpoints. Fortunately,

outliers usually affect a small area which lasts about 20 symbols. If we fill those regions as the

CNV we want, it would be easy for the algorithm to detect CNV larger than 1kb. From the
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Figure 4.6 CNV Segments 2

figure, almost all the CNV indicated from arrayCGH is included in our result. Besides, our

result provided more regions that CNV may happen.

4.2 Conclusions, Discussion, and Future Work

Using reading depth and paramorphism information, we developed a method for detecting copy

number variation between two different genomes. We exploited the paramorphism information

to strengthen reading depth power in detection of structural variation in genome. Also we

applied belief propagation to solve the HMM and found the conditional single base copy number

probability based on the prior information of other base pairs.

From the simulation test, we can see that outliers do have effect on the results. Outliers

are common in the data. It is possible to find outliers before applying the message passing.

However, this may increase program complexity. Considering single outlier could only result

in small outstanding regions, it is possible to set a threshold length and smooth those regions.

During the filter process, we set the threshold as 50b in size.

We applied Poisson distribution to describe sample reading depth distribution in the model.

The constant λ in the Poisson distribution is taken directly from the reference reading depth,

which assumed to be a constant in our model. However, reading depth from the reference

genome is also sampled randomly, which resulted in a random distribution for λ and would
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influence the prior likelihood in our model. Future work should focus on eliminating such

fluctuation. The best way is to find the distribution of reading depth or find a way to minimize

the variation of reference reading depth.

Our results offered similar regions and reliable likelihood of the PAV and CNV region

compared with those detected from arrayCGH method. Besides, in the simulation, our method

provides accurate start and end locations for simulated region.

4.2.1 Discussion

Paramorphism is important in this algorithm. It provides a larger probability for potential

CNV region. Currently we do not have access to data with obvious paramorphism region.

Assume a region of reading depth two (normalized by the Poisson parameter λ), and with

mutations. Without mutation information, this region would be detected as CNV equal to 2,

while in our method this region would be definitely larger than 2.

Results from simulation data suggest that this algorithm has the ability of correctly de-

tecting CNV/PAV region. The start point and end point are close to the true points. Outliers

would result in inaccurate detected copy number regions, which could be reasonably smoothed.

The difference between the start/end point and true points could be due to the belief propa-

gation algorithm.

Results from the maize data are hard to generate a conclusion. First of all, there is no true

answer for the CNV/PAV region. The overlapped region could suggest that both our method

and arrayCGH method detect this region as potential structural variation region. Two methods

are consistent in those regions. The different regions may need further investigation if possible.

The bias in the start point and end point is caused by the sum-product algorithm. If there

is a sudden change in the copy number for one base pair, it would last for some length until it

stables. We can call it “cache region”. Such phenomenon is unavoidable. From the simulation

data, the average cache region is about 200b and the largest one is 421b, which are less than

1kb and would not affect the result too much.

For those overlapped regions, we can see the width from arrayCGH data is longer than the
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width of our data. Our result just separated the long width into small segments. For example,

the arrayCGH showed a width as long as 99315. In our results, this width has been separated

into 11 smaller segments. Also some locations are not covered. This may be explained by the

different resolution of two methods.

4.2.2 Future work

For the future work, several improvements could be done to the algorithm.

First, we chose the reference genome reading depth as the λ in the Poisson distribution.

However, reference reading depth is also sampled randomly. The variation in the reference

reading depth would influence the accuracy of our results. We may find a way to minimize the

variance in the reading depth.

Besides, Poisson distribution does not work perfectly in the algorithm. The Poisson dis-

tribution requires the equality between its mean and variance. The mapping sequence cannot

guarantee that this constraint is met. We may test some other distributions to find a better

one.

When calculating the likelihood for larger copy number, we use reference reading depth to

estimate the prior distribution of copy number. This also requires some adjustment.

Finally, the algorithm may need test on more data to validate its accuracy. It would be

best if there more simulation data close to the real data but with known ground truth are

available.
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